Unit I.

Online test (typical questions)

- 1. The solubility of gaseous compounds in water, $L(gas) / L(H_2O)$, depends on: a) volume of gas b) pressure of gas c) volume of water d) mass of water
- 2. The mass fraction of a compound X in a solution, ω(X), can be expressed in:
 a) mg%
 b) mg/mL
 c) mol
 d) mol/kg
- 3. The molar concentration of compound X in a solution can be calculated using the formula:

a) $m(X) / V_{(sol)}$ b) m(X) / M(X) c) $m(X) / m_{(sol)}$ d) $m(X) / [M(X) \times V_{sol}]$

- 4. The mass of sulfuric acid that should be dissolved in 440 g of water to prepare a solution with ω(H₂SO₄) = 12% is:
 a) 52.8 g
 b) 60 g
 c) 45 g
 d) 80 g
- 5. The molar concentration of a sodium hydroxide solution containing 0.25 mol of NaOH in 500 mL of the solution is:
 a) 0.25 mol/L
 b) 0.05 mol/L
 c) 0.5 mol/L
 d) 0.025 mol/L
- 6. The mass of potassium bromide (M = 119 g/mol) that should be dissolved in 400 g of water to prepare a KBr solution with b(KBr) = 0.25 mol/kg is: a) 29.75 g b) 1.19 g c) 11.9 g d) 297.5 g

7. Are the following statements true or false?1) osmosis is the diffusion of solvent molecules through a semipermeable membrane from a solution with a lower concentration of dissolved particles into a solution with a higher concentration;

2) osmolarity is the sum of molar concentrations of all particles in the solution except the particles of the solvent;

3) an increase in temperature decreases the osmotic pressure of a solution;

4) the lower the degree of a dispersion, the greater the osmotic pressure of the dispersion, given that the mass concentration of the dispersed phase is the same.a) trueb) false

- 8. The osmolarity (mol/L) of a 0.4 M sucrose ($C_{12}H_{22}O_{11}$) solution is: a) 0.1 b) 0.4 c) 0.2 d) 1.2
- 9. The osmolarity (mol/L) of a solution containing 0.05 mol/L NaCl and 0.15 mol/L KNO₃ is:
 a) 0.4 b) 0.3 c) 0.2 d) 0.15
- 10. Match the isotonic solutions if 1 liter of each solution contains the given number of moles of solutes at the same temperature:

0.15 mol of NaCl	$0.1 \text{ mol of } K_2 SO_4$
0.2 mol of Na ₂ CO ₃	$0.1 \text{ mol of KNO}_3 \text{ and } 0.4 \text{ mol of } C_6 H_{12} O_6$
0.4 mol of NaCl	0.2 mol of CaCl ₂ and 0.1 mol of NaCl
0.24 mol of NaCl	$0.11 \text{ mol of } Na_2SO_4 \text{ and } 0.05 \text{ mol of } Mg(NO_3)_2$

11. Which solutions are hypotonic with respect to blood plasma (osmolarity of blood plasma is 0.3 mol/L):

a) 0.3 M NaCl b) 0.1 M CaBr₂ c) 0.1 M KNO₃ d) 0.3 M $C_6H_{12}O_6$

- 12. The osmotic pressure at 25 °C in the series of solutions 0.1 M K₂SO₄, 0.1 M KBr, 0.1 M C₆H₁₂O₆:
 a) increases
 b) decreases
 - c) does not change d) has no definite pattern
- 13. Match the values of osmotic pressure (kPa) of the solutions with equal molar concentrations of solutes at same temperature with the formula of the solute:
 1) NaCl
 2) HCOOH
 3) CaCl₂
 4) CO(NH₂)₂
 a) 750
 b) 250
 c) 280
 d) 500
- 14. Equal volumes of solutions contain the equal masses of the following compounds: a) Li₂SO₄, b) K₂SO₄, c) Na₂SO₄, d) Rb₂SO₄. Arrange the solutions in order of decreasing molar concentration.
- 15. An endothermic reaction is defined by the inequality: a) $\Delta H > 0$; b) $\Delta H < 0$; c) $\Delta G < 0$; d) $\Delta G > 0$.
- 16. A process with $\Delta H > 0$ and $\Delta S > 0$ is possible in the closed system: a) at any temperature; b) only at low temperature; c) only at high temperature; d) never.
- 17. Without calculations, identify the processes with a positive ΔS value: a) $CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}$; c) $2CH_{4(g)} \rightarrow C_2H_{2(g)} + 3H_{2(g)}$; b) $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$; d) $NH_{3(g)} + HCl_{(g)} \rightarrow NH_4Cl_{(s)}$.
- 18. For which of the following reactions the enthalpy change is equal to $\Delta H^{\circ}_{f}(C_{2}H_{2(g)})$:

a) $C_2H_{2(g)} + H_2O_{(l)} \rightarrow CH_3COH_{(l)};$ c) $2 CH_{4(g)} \rightarrow C_2H_{2(g)} + 3 H_{2(g)};$ b) $2 C_{(s)} + H_{2(g)} \rightarrow C_2H_{2(g)};$ d) $CaC_{2(s)} + 2 H_2O_{(l)} \rightarrow C_2H_{2(g)} + Ca(OH)_{2(aq)}.$

- 19. Choose the correct statements:
 - a) the standard enthalpy change of a neutralisation reaction is positive;
 - b) exothermic reactions are always spontaneous;

c) the molar entropy of a compound in the solid state is lower than that in the gaseous state;

d) the molar entropy of a compound in the gaseous state is lower than that in the liquid state.

20. For which of the following reaction the enthalpy change is equal to ΔH°_{c} ?

a)
$$2S_{(s)} + 3O_{2(g)} \rightarrow 2SO_{3(g)};$$

b) $SO_{2(g)} + 0.5O_{2(g)} \rightarrow SO_{3(g)};$
c) $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)};$
d) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}.$

- 21. During the reaction $2H_2O_{(l)} = 2H_{2(g)} + O_{2(g)}$ the entropy of the system: a) increases; c) remains approximately the same;
 - b) first increases, then decreases; d) decreases.
- 22. The value of standard molar entropy for the series of compounds
 - methane \rightarrow cyclopropane \rightarrow butane \rightarrow propane:
 - a) increases; c) remains constant;
 - b) shows no definite pattern; d) decreases.

23. The standard enthalpy change of formation (ΔH°_{298}) for H₂S is -20 kJ/mol. $M(H_2S) = 34$ g/mol. Which mass of H_2S was formed if 4.0 kJ of heat was released?

a) 6.8 g; b) 3.4 g; c) 34 g;

24. The equilibrium constant of a reaction decreases when temperature increases. According to Le Chatelier's principle, the reaction is: a) endothermic; b) exothermic; c) endergonic; d) exergonic.

25. An increase in pressure shifts the equilibrium to the left in: a) $CO_{2(g)} + H_{2(g)} \implies CO_{(g)} + H_2O_{(g)};$ b) $C_4H_{10(g)} \iff C_4H_{8(g)} + H_{2(g)};$

- c) $H_2S_{(g)} \implies H_{2(g)} + S_{(s)};$
- d) $PCl_{3(g)} + Cl_{2(g)} \implies PCl_{5(g)}$.
- value 26. The of the equilibrium constant for the reaction $Fe_{(s)} + CO_{2(g)} \iff FeO_{(s)} + CO_{(g)}$ is 0.005. Which statement is true for the position of equilibrium?: b) $[CO] = [CO_2] / 0.005;$ a) $[CO] / [CO_2] = 0.005;$
 - c) $[CO] \times [FeO] = [CO_2] / [Fe];$
- d) $[CO] \times 0.005 = [CO_2] + [H_2].$

d) 17 g.

27. Choose the correct statement:

a) an increase in temperature does not affect the position of equilibrium;

b) a catalyst increases the rate of forward and reverse reactions and changes the value of equilibrium constant;

c) the value of equilibrium constant depends on temperature;

d) an increase in concentration of products increases the equilibrium constant.

28. For the reaction: $SO_{2(g)} + NO_{2(g)} \implies SO_{3(g)} + NO_{(g)}$ at 400 K the value of equilibrium constant (K_c) is 1. Determine the direction of the spontaneous process at 400 K if the initial concentrations of SO₂, NO₂, SO₃ and NO are 0.2; 0.4; 0.2 and 0.2 mol/L respectively.

b) to the left:

- a) can not be determined;
- c) to the right;

d) the system is already at equilibrium.

- 29. The reaction $2A + B \rightarrow C$ proceeds in a solution. The rate law expression for this reaction is $v = k \cdot cA \cdot cB$ and $\gamma = 2$. What will happen to the reaction rate if: 1) c(A) increases 2 times; 2) c(B) decreases 2 times;
 - 4) temperature increases by 20 °C? 3) pressure increases;

a) decreases 2 times; b) increases 2 times; c) increases 4 times; d) no change.

30. The half-life of a radioactive isotope is 5 years. How long will it take the isotope activity to fall to 25% of its original level?

a) 10 years; b) 15 years; c) 20 years; d) 40 years.

Paper test (typical questions)

- 1. 500 mL of a solution contains 0.05 mol of glucose ($C_6H_{12}O_6$) and 0.02 mol of KCl.
 - a) Calculate the osmolarity of the solution.
 - b) Calculate the osmotic pressure of the solution at 25°C.
 - c) What will happen to erytrocytes in this solution? (the osmotic pressure of blood plasma is

740-780 kPa).

- 2. The standard enthalpy of combustion (ΔH^0 (combustion) 298) for butane is 2880 kJ/mol.
 - a) Write the thermochemical equation of the reaction with this enthalpy changeb) Calculate the standard enthalpy change of formation for butane if
 - $\Delta H_{f 298}^{0}$ (CO_{2 (gas)}) = -393.5 kJ/mol, $\Delta H_{f 298}^{0}$ (H₂O _(liquid)) = -286 kJ/mol
 - c) Calculate the volume of butane (STP) burned if 144 kJ of heat was released in the reaction
- 3. For the reaction $CaCO_{3(solid)} \rightarrow CaO_{(solid)} + CO_{2(gas)}$
 - a) Write the equilibrium constant expression (K_c)
 - b) Calculate ΔG^{0}_{298} for the reaction if ΔG^{0}_{f} for CaCO₃, CaO and CO₂ are: 1131.8;

-600 and -395 kJ/mol, respectively

c) Calculate the K_c value for the reaction under standard conditions

4. The initial reaction rate of the reaction $2 \text{ A} \rightarrow \text{B} + \text{C}$ is $5 \cdot 10^{-3} \text{ mol/L} \cdot \text{s}$ if the initial concentration of A is 0.02 mol/L.

a) Write the rate law expression for this reaction assuming that it is a zero order process

b) Calculate the reaction rate constant for the reaction

c) How the reaction rate will change if temperature increases by 20°C given that the temperature coefficient is 2?