Questions for test-control on the theme:"Vectorial analysis of electrocardiogram"

1. The depolarization wave spreads through the ventricular muscle:

- 1. From the epicardial surface to the entire endocardial surface
- 2. From the entire endocardial surface to the epicardial surface
- 3. To the epicardial and endocardial surfaces simultaneously

2. The repolarization wave spreads through the ventricular muscle:

- 1. From the epicardial surface to the entire endocardial surface
- 2. From the entire endocardial surface to the epicardial surface
- 3. To the epicardial and endocardial surfaces simultaneously

3. The amplitude of R wave will be highest:

- 1. If the vector of a depolarization is perpendicular to axis of lead
- 2. If the angle between the vector of depolarization and axis of lead is equal 30°
- 3. If the angle between the vector of depolarization and axis of lead is equal 60°

4. Choose the polarity of P wave in lead aVR when mean vector of depolarization of both atria has normal direction:

- 1. Positive P wave3. Two-phase P wave
- 2. Negative P wave
- 5. Choose the polarity of T wave in lead aVR when mean vector of repolarization of both ventricles has normal direction:
 - 1. Positive T wave3. Two-phase T wave
 - 2. Negative T wave
- 6. Point out the sequence of depolarization of various departments of ventricles of heart:
 - 1. The apex and walls of both ventricles are excited by the first
 - 2. An interventricular septum is excited by the first
 - 3. The basis of ventricles of heart is excited by the first
- 7. Choose the sequence of spread of excitement of the atria:
 - 1. The right atrium is excited by the first
 - 2. The left atrium is excited by the first
 - 3. The both atria are excited at the same time
- 8. Normal amplitude of Q wave in the lead system on a standard surface ECG has not to exceed 1/4 from amplitude of wave:
- 1. ...R 2. ...S 3. ...algebraic sum of R and S 9. Electrical diastole of heart is in accord with:
 - 1. P-Q interval3. T-P segment
 - 2. T-P interval 4. Q-T interval
- **10.** What of the following ECG-leads are bipolar?

1. aVF. aVL, aVR 2. I. II. III 3. V_1 - V_6			
11. What is an interval of intrinsic deviation (ventricular activation)			
time)?			
1 Time spread of excitation from the endocardium to the enicardium			
of the right and left ventricles			
2 Time spread of excitation from the atria to the ventricles			
3. Time difference of excitation myocardium of the left and right			
ventricles			
4. Time difference of excitation atrial and ventricular myocardium			
12. Mean vector of EMF of heart in the horizontal plane is registered in			
following leads:			
1. V_1 - V_6 2. aVR. aVL. aVF 3. I. II. III			
13. Normally, interval of intrinsic deviation in lead V_1 should not exceed:			
1. 0.03 sec 2. 0.05 sec 3. 0.3 sec 4. 0.5 sec			
14. Norally, interval of intrinsic deviation in lead V_6 should not exceed:			
1. 0.03 sec 2. 0.05 sec 3. 0.3 sec 4. 0.5 sec			
15. A positive electrode on the left leg is in following leads:			
1. aVF 3. I 5. III			
$2. \text{ aVL} \qquad 4. \text{ II}$			
16. A positive electrode on the left arm is in following lead:			
1. aVR 3. I 5. III			
$2. \text{ aVL} \qquad 4. \text{ II}$			
17. Normally, an electrical axis of the heart is:			
1. About the positive axis of lead, where the greatest amplitude R			
wave manifests			
2. About the positive axis of lead, where the smallest amplitude R			
wave is shown			
3. About the negative axis of lead, where the greatest amplitude S			
wave is shown			
4. About the axis of lead, where the algebraic sum of the amplitudes			
of all the waves of QRS is equal to zero			
18. During depolarization stage external surface of a membrane of a			
cardiomyocyte has:			
1. Positive charge3. No electrical charge			
2. Negative charge			
19. The negative electrode on the right arm is in following leads:			
1. I 2. II 3. aVR			
20. Combined (zero, passive) electrode in lead V_1 is:			
1. On left arm3. On right leg			
2. On right arm4. On left leg			
21.Normal duration of P-Q interval should not exceed:			

1. $0,02 \text{ sec}$	2. 0,1 sec	3. $0,2 \text{ sec}$	
22. During repolarization sta	ge external surface of a	n membrane of a	
cardiomyocyte has:			
1. No electrical charge	3. Negative c	harge	
2. Positive charge	C	C	
23. Positive electrode on the right arm is in following lead:			
1. I	2. II	3. aVR	
24. Normal duration of P-Q interval should not exceed:			
1. 0,01 sec	2. 0,1 sec	3. 0,2 sec	
25. Electrical ventricular syst	tole is in accord with:		
1. P-T interval	3. Q-T interv	al	
2. P-Q interval	4. R-R interv	al	
26. Heart rate per minute in the right sinus rhythm can be calculated by			
the formula:			
1. The rate of the heart	beat= 60 sec/P-P sec		
2. The rate of the heartbeat = 60 sec/Q-T sec			
3. The rate of the heartbeat = 60 sec/R-R sec			
4. The rate of the heart	beat= 60 sec/QRS sec		
27. The maximal amplitude of the R wave at a deviation of an electrical			
axis of heart to the left is recorded in following lead:			
1. I	2. II	3. III	
28. The maximal amplitude of the R wave at a deviation of an electrical			
axis of heart to the right is recorded in following lead:			
1. I	2. II	3. III	
29. The maximal amplitude o	of the S wave at a devia	tion of an electrical	
axis of heart to the left is recorded in following lead:			
1. I	2. II	3. III	
30. The maximal amplitude of the S wave at a deviation of an electrical			
axis of heart to the right is recorded in following lead:			
1. I	2. II	3. III	
31. Normally, positive P wave	e is recorded in followi	ng leads:	
1. I	2. aVF	3. aVR	
32. Normally, negative P way	e is recorded in followi	ing lead:	
1. I	2. aVF	3. aVR	
33. Normally, positive T way	e is recorded in followi	ng leads:	
1. T	2. aVF	3. aVR	
34. Normally, negative T wave is recorded in following lead:			
1 I	2 aVF	3 aVR	
35. How the cardiac electrica	l axis in the frontal pla	ne in norm is	
directed?			

- 1. Coincides with the direction of the anatomical axis of the heart
- 2. Perpendicular to the anatomical axis of the heart
- 3. Is an angle of 30° relative to the anatomical axis of the heart 4. Is an angle of 60° relative to the anatomical axis of the heart