Questions for test -control on the theme «Cell injury»

The first level.

1. The mechanisms of cell injury:

- 1. activation of lipid peroxidation
- 2. activation of membrane phospholipases
- 3. release of enzymes from lysosomes
- 4. activation of DNA reparation enzymes
- 5. expression of oncogene

2. The signs of cell injury:

- 1. increased intracellular ATP
- 2. increased intracellular Na⁺
- 3. increased intracellular Ca²⁺
- 4. increased intracellular pH

3. The functional signs of the cell injury:

- 1. decreased cytoplasmic membrane permeability
- 2. interruption of cell proliferation
- 3. reduction of specialized cellular function
- 4. decreased cellular ATP synthesis
- 5. decreased cell mobility
- 4. Enumerate the consequences of the damaged cytoplasm membrane ATPdepended and damaged ion-exchange mechanisms :
 - 1. increased intracellular Na⁺
 - 2. decreased intracellular Ca²⁺
 - 3. decreased intracellular K⁺
 - 4. increased intracellular Ca²⁺
 - 5. increased intracellular K⁺

5. The «nonspecific» manifestations of cell injury:

- 1. cytoplasmic acidosis
- 2. formation of radio toxins
- 3. activation of lysosome enzymes
- 4. denaturation of protein molecules
- 5. increased cytoplasm membrane permeability

6. The signs of irreversible cell injury:

- 1. output of structural proteins from cytoplasmic membrane
- 2. increased intracellular Ca²⁺
- 3. swelling of mitochondria
- 4. precipitation of Ca-salts inside mitochondria
- 5. output of enzymes from lysosome

7. The injury of which cellular components will lead to immediate cell death?

1. lysosome

- 2. Nucleus
- 3. endoplasmic reticulum 4. Plasma membrane

- 8. The activation of which biochemical processes will lead to injury of the cytoplasmic membrane?
 - 1. aerobic glycolysis

- 2. Proteolysis
- 3. lipid peroxidation 4. Phospholipolysis
- 9. Why does the intracellular pH change during the cell injury?
 - 1. decreased H⁺ utilization
 - 2. activation of anaerobic glycolysis
 - 3. accumulation of incompletely oxidized metabolic products
 - 4. activation of ATP resynthesis
 - 5. increased intracellular osmotic pressure

10. The signs of apoptotic cell death:

- 1. release and activation of lysosome enzymes
- 2. cell wrinkling
- 3. forming of bodies containing fragments of nucleus and organelles
- 4. disorganized breaks of DNA
- 5. unimpaired cytoplasmic membrane

11. The consequences of apoptotic cell death:

- 1. destruction and elimination of single cells
- 2. autolysis of dead cells by lysosome enzymes
- 3. phagocytosis of separated fragments of cells by macrophages
- 4. formation of zone with great number of dead and damaged cells

12. The signs of necrotic cell death:

- 1. condensation of chromatin
- 2. karyolysis
- 3. swelling of cells
- 4. membrane injury
- 5. break down of DNA in exactly distinct sites

13. The consequences of necrotic cell death:

- 1. autolysis of dead cells
- 2. formation of zone with great number of dead and damaged cells
- 3. development of inflammation
- 4. destruction and elimination of single cells without damage of the tissue

14. The direct consequences of the reduction of pH in the damaged cell:

- 1. damage of the cell membrane proteins
- 2. activation of lipid peroxidation
- 3. activation of lysosome phospholipases and proteases
- 4. increased lysosome membrane permeability
- 5. activation of glycolysis

15. Point out the nonenzymatic cellular antioxidants:

- 1. ceruloplasmin 2. Vitamin E
- 3. ubiquinone 4. Catalase

16. Choose factors, promoting the lipid peroxidation of membranes during the ischemic cell injury:

1. depression of O₂-radicalgenerating systems

- 2. presence of residual content of O_2 in the tissues
- 3. deficit of energy
- 4. increased levels of prooxidants
- 5. decreased activity of antioxidant enzyme systems

17. The factors, promoting the cellular hyperhydration during the cell injury:

- 1. increased intracellular Ca²⁺
- 2. increased intracellular Na⁺
- 3. depression of anaerobic glycolysis
- 4. increased cytoplasmic membrane permeability

18. The cellular defense system from damaged effects of free radicals consists of:

- 1. superoxide dismutase
- 2. Phospholipase A_2
- 3. glutathione peroxidase
- 4. Catalase

5. adenylatecyclase

19. Point out the causes of the cellular hyperhydration during cell injury:

- 1. increased cytoplasmic membrane permeability
- 2. activation of lipid peroxidation
- 3. increased intracellular osmotic pressure
- 4. increased activity of glycogen synthetase

20. Point out the factors, causing irreversible cell injury during the reperfusion:

2. Restrictase

- 1. increased intracellular Na⁺
- 2. significant loss of adenine bases by cell
- 3. overload of mitochondria by Ca²⁺
- 4. output of integral proteins from cytoplasmic membrane
- 5. activation of lysosome enzymes

21. Point out the mechanisms of cell injury during the reperfusion:

- 1. activation of membrane phospholipases
- 2. excess of intracellular Ca²⁺
- 3. activation of oxidizing phosphorylation
- 4. activation of lipid peroxidation
- 5. increase in entry of O_2 into damaged cell

22. Point out the enzymes of antimutant cellular system:

- 3. adenylatecyclase 4. DNA-polymerase
- 5. histaminase

1. ligase

23. Choose the consequences of complement system activation:

- 1. inhibition of phagocytosis
- 2. activation of mast cells degranulation
- 3. osmotic lysis of target-cell
- 4. apoptosis of target-cell
- 5. activation of neutrophils

24. Point out the consequences of increased intracellular Ca²⁺:

1. activation of Ca²⁺-depended proteases

- 2. decreased osmotic cytoplasmic pressure
- 3. activation of membrane-bound phospholipases
- 4. activation of lipid peroxidation
- 5. activation of antioxidant system enzymes

25. Choose the compensative changes of intracellular metabolism during the ischemic cell injury:

- 1. increased of anaerobic glycolysis
- 2. decreased protein synthesis
- 3. oxidation and phosphorylation dissociation in mitochondria
- 4. mobilization of glycogen
- 5. intensification of arachidonic acid metabolism

26. Poin out the compensative reactions of the cell during ischemic cell injury:

- 1. restriction of synthetic processes
- 2. decreased functional activity of cell
- 3. activation of anaerobic glycolysis
- 4. activation of lipid peroxidation
- 5. activation of membrane-bound phospholipases

27. Choose the effects of membrane lipid peroxidation:

- 1. changed conformation of receptor proteins
- 2. decreased cytoplasmic membrane permeability
- 3. decreased intracellular Ca²⁺
- 4. disturbance of activity of membrane-bound enzymes
- 5. disturbance of cytoplasmic membrane structure
- 28. The intracellular organelles which protect the cell from excessive accumulation of intracellular Ca²⁺ are: 2. Mitochondria

4. Nucleus

- 1. lysosomes
- 3. sarcoplasmic reticulum
- 5. ribosomes

29. The causes of phospholipase activation during cell injury include:

- 1. deficit of energy
- 2. increased intracellular Na⁺
- 3. increased intracellular Ca²⁺
- 4. intracellular acidosis
- 5. intensification of lipid peroxidation

30. Point out the factors which can disturb the functions of cellular receptors:

- 1. desensitization
- 2. activation of lipid peroxidation
- 3. activation of guanylatecyclase
- 4. activation of membrane-bound phospholipases
- 5. activation of calmodulin

The pathogenetic factors of ischemic cell injury include: 31.

- 1. increased intracellular Ca²⁺
- 2. activation ATP-depended transport enzymes
- 3. activation of membrane-bound phospholipases

- 4. activation of lipid peroxidation
- 5. intracellular alkalosis

32. Which ions can activate membrane-bound phospholipases:

- 1. Ca^{2+} 2. K^+ 3. H^+ 4. Na^+
- **33. The factor which can activate phospholipases of lysosome membrane:** 1. Ca^{2+} 2. H^+ 3. K^+ 4. Na^+

34. Point out the intracellular adaptive mechanisms during acute cell injury:

- 1. activation of glycolysis
- 2. intensification of Ca^{2+} -entering into cell
- 3 dissociation between oxidation and phosphorylation in mitochondria
- 4. activation of DNA-polymerases and ligases
- 5. activation of antioxidant protective factors
- **35.** Choose the pathogenetic factors of the cell injury during changes of its genetic program
 - 1. changed gene structure
 - 2. expression of pathological genes
 - 3. repression of normal genes
 - 4. expression of genes of the main complex of histocompatibility
 - 5. translocation of genes

36. Write down the scheme of the vicious circle during ischemic cell injury:

- 1. development of intracellular acidosis
- 2. damage of membranes and mitochondria enzymes
- 3. decreased ATP level in the cell
- 4. decreased ATP synthesis in mitochondria
- 5. activation of anaerobic glycolysis

37. Write down the scheme of the vicious circle during ischemic cell injury:

- 1. decreased ATP synthesis
- 2. damage of membranes and mitochondria enzymes
- 3. deficit intracellular ATP
- 4. activation of lipid peroxidation
- 5. deficit of O_2 and metabolic substrates

38. Write down the scheme of the vicious circle during ischemic cell injury:

- 1. increased intracellular Ca²⁺
- 2. decreased ATP synthesis
- 3. inactivation of ATP-depended transport enzymes
- 4. activation of proteases and mitochondria membrane phospholipases
- 5. decreased intracellular ATP

39. The general mechanisms of the biological membrane damage:

- 1. including of amphiphil-forming micelles in a plasma membrane
- 2. activation of lipid peroxidation
- 3. activation of membrane-bound phospholipases and proteases
- 4. dissociation between oxidation and phosphorylation in mitochondria5. activation of anaerobic glycolysis
- 40. Point out the most pathogenetic factors of cell injury:

- excess of intracellular Ca²⁺
 intracellular deficit of energy
- 3. deficit of intracellular H⁺
- 4. loss of cellular purine bases5. increased cytoplasmic membrane permeability